

FROM CHIPS TO SYSTEMS - LEARN TODAY, CREATE TOMORROW

DEC 5 - 9, 2021 \blacklozenge San Francisco, California

Hands-on ML: Post-layout Capacitance Estimation

Siddhartha Joshi and Brett Shook

With

Sunder Kankipati, Prateek Bhansali, Chandramouli Kashyap

Intel Corporation

Tutorial Outline

- Introduction:
 - Custom circuit design flow and parasitic estimation
- Machine Learning(ML) Pipeline for Parasitic Estimation
 - Data collection, preparation, feature engineering, training, etc.
- Accompanying paper: B. Shook, P. Bhansali, C. Kashyap, C. Amin and S. Joshi, "MLParest: Machine Learning based Parasitic Estimation for Custom Circuit Design," 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1-6, doi: 10.1109/DAC18072.2020.9218495.

Custom Circuit Design Flow

Problem Definition

- Post-layout design metrics impacted by interconnect parasitic and device layout effects
- Pre-layout vs. post-layout simulation results differ up to 250%*
- Post-lay/pre-lay iterations expensive
 - Causes delay in product schedule

Pre-Layout vs. Post-Layout Simulation Measurement

Schematic vs Post-Layout Simulations of Analog Circuits in Intel 10nm Technology [<u>MLParest, DAC 2020</u>]

Parasitic Estimation

- Designers routinely guess and put explicit resistor and capacitors to model interconnect effects
 - Manual and require a lot of experience
 - Need to maintain separate schematic
- ALS is the holy grail and an active area of research
- Our solution: Automatically estimate parasitics in pre-layout phase and avoid iterations
 - Can we use machine learning? Yes.

MLParest: Machine Learning Based Parasitic Estimation

- Given a pre-layout schematic
 - Leverage existing data and estimate interconnect parasitics
 - Interconnect parasitics should be usable in standard circuit simulation flow
 - Should not increase SPICE runtime

MLParest Design/Modeling Choices

- What to learn from post-layout extracted netlists?
 - Leverage linear system theory to model POLO net approximately
 - Effective time constant
 - Total incident cap
- How to represent estimated interconnects?
 - Predict effective time constant and total incident cap
 - Use SPEF format to represent a "topology"
 - Topology:
 - Star vs delta network
 - Star network does not increase dense nodes
 - Delta network would increase dense nodes
 - The number of nodes increased is linear to the number of MOS devices
 - Simulation runtime increase is a modest 20%

Machine Learning Project Life Cycle

Life Cycle of an ML Project [1]

Parasitic Estimation using ML

- A crawler to go through archived design database of pre and post layout netlists
- Gather attributes for each net in every circuit • Features: • Number of MOS M2 • Number of PMOS Net A • Number of NMOS Net A • Number of other devices M3 Width • • Length • Number of ports • IO PIN PRE-LAYOUT • Width of NMOS devices POST-LAYOUT • Width of PMOS devices • Output variables: • Total Net Capacitance • Time Constant/effective resistance **#NMOS Total Net Cap #MOS #PMOS** IO PIN **# Ports** 2 2 0 1.123 fF 4 0

Hands on ML: Step-by-Step Example

- Goal: Exposition of ML in EDA (MLParest)
- Does not cover:
 - Data collection
 - Resistance estimation
- Files: https://github.com/prateek-bhansali/parasitic_estimation_tutorial
 - Normalized input data for training
 - Jupyter Notebook

Data Exploration

- Look at min, max, standard deviation, correlation, etc. of the dataset
 - Helps in flushing out bugs, modeling, figuring out new features, outliers, removing uncorrelated features

Statistics of Numerical Data										
df.describe()										
	сар	f1	f2	f3	f4	f5	f6	f7		
count	137505.000000	137505.000000	137505.000000	137505.000000	137505.000000	137505.000000	137505.000000	137505.000000		
mean	0.007995	0.002204	0.080579	0.001112	0.000554	0.000711	0.001249	0.002838		
std	0.025053	0.009111	0.272188	0.006975	0.005343	0.005152	0.011249	0.012596		
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		
25%	0.000544	0.000710	0.000000	0.000177	0.000073	0.000103	0.000000	0.000512		
50%	0.001488	0.000993	0.000000	0.000302	0.000146	0.000165	0.000000	0.001025		
75%	0.006313	0.001561	0.000000	0.000781	0.000366	0.000413	0.000558	0.002049		
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000		

Data Exploration: Correlation

Data Preparation

Identify target and input features

Prepare the Data For Machine Learning Algorithms

Data Preparation

- Outlier detection
 - Helps in eliminating dirty nets from opens/shorts
 - Used RANSAC algorithm
- Normalization
 - Different features are on different scale: w, l, number of MOS
 - Min-max scaling or standard scaler scaling

Number of outliers found: 898

Data Preparation: Outlier Detection

Outliner Detection: Use RANSAC (RANdom SAmple Consensus) algorithm.

```
def filter outliers(X, Y, max trials=500, sigma scale=3):
    X d = X.copy()
    Y d = Y.copy()
    print("Length of Original data: ", len(X_d))
    min samples = np.floor(len(X d)/2)
    lmr = linear model.RANSACRegressor(base estimator=linear model.LinearRegression(copy X=True, normalize=True),
                                       min samples=min samples, residual threshold=sigma scale*np.std([Y]), max trials=max trials, random state=137)
    model = lmr.fit(X d, Y)
    inlier mask = lmr.inlier mask
    outlier mask = np.logical not(inlier mask)
    X = X d[inlier mask].copy()
    Y = Y d[inlier mask].copy()
    print("Length of learing data: ", len(X))
    print("Percentage of original data: ", len(X)/len(X d))
    print("Number of outliers found: ", len(X_d)-len(X))
    return X, Y
X = circuit[num attribs+cat attribs]
Y = circuit[target cols]
X, Y = filter outliers(X, Y)
Length of Original data: 137505
Length of learing data: 136607
Percentage of original data: 0.9934693283880586
```


Feature Engineering

- Option A: Manually engineer non-linear features and use them in a linear regression ML model
 - Requires human resources and domain knowledge
- Option B: Use inherently non-linear models like Random Forest(RF), Gradient Boosted Decision Trees (GBDT) or Neural Network (NN)
 - Does not require human intervention
 - RF led to great results

	cap	f1	f2	f3	f4	f5	f6	f7	f8	f9	 f13	f14	f15	f16	f17	f18	f19	f20	
0	0.077530	0.023840	1	0.014869	0.006585	0.009917	0.0	0.000000	0.000000	0.016164	 0.025862	0.000000	0.0	0.000000	0.0	0.0	0.0	0.023698	0
1	0.022282	0.007805	0	0.001952	0.000878	0.001322	0.0	0.003586	0.001870	0.001616	 0.006466	0.009021	0.0	0.004187	0.0	0.0	0.0	0.007805	0.

Train/Validation/Test Split

- Traditionally, data is split in train (80%), validation (10%) and testing(10%) sets
 - Labeled data is not massive, so we only do training/testing split in MLParest
 - Use K-Fold Cross Validation (CV) for tuning parameters
 - Can we split based on circuits instead?
 - 80% of circuits (and their nets) are used for training and rest 20% are used for testing

Data Normalization and One-hot Encoding using Pipelines

Transformation Pipelines

```
# numerical pipeline object -- you may do data imputation here
# -- we will do standard scaler transformation to our data
num_pipeline = Pipeline([('std_scaler', StandardScaler())])
```


Model Training

- Selection of model: factor in complexity, inference/training time, data volume, interpretability, fitting...
- We found RF/GBDT to be robust to overfitting in practice
- Training time was not a concern as amount of data is not massive

Model Type	Training Speed	Training Data needed	Inference Speed	Accuracy
Linear Models	Fastest	Low	Fastest	Low
Ensemble Methods (GBDT, RF)	Fast (RF can be parallelized)	Moderate	Fast	Great
Neural Networks	Slow	High	Slower	Best

Model Evaluation Metrics

- How to check if model is performing well?
 - Offline/Batch Metric: a proxy for simulation accuracy
 - Classification tasks: MLParest is not classification.
 - Precision, recall, F1 score
 - Regression: We use RMSE for MLParest
 - Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?
 - Try both to see what works best for your application
 - Sci-kit has non-optimal implementation of MAE as of June 2021 runs slow.
 - Online Metric:
 - Simulation accuracy: available when SPICE simulations are run with post-layout data

Default Linear, RF and GBDT Accuracy

Default Linear Regression Model	Default Random Forest (RF) Regression				
%%time # Ordinary least squares Linear Regression.	%%time # Random Forest Regressor				
LinearRegression fits a linear model with coefficients $w = (w1,, wp)$ to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation.	A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.				
<pre>lin_reg = LinearRegression() lin_reg.fit(X_train_prepared, Y_train) print("RMSE of default Linear Model: ", get_model_rmse(lin_reg, full_pipeline, X_train, Y_train))</pre>	<pre>forest_reg = RandomForestRegressor(n_jobs=-1) forest_reg.fit(X_train_prepared, Y_train.values) print("RMSE of default RF Model: ",get_model_rmse(forest_reg, full_pipeline, X_train, Y_train))</pre>				
RMSE of default Linear Model: 0.012109838428412388 CPU times: user 284 ms, sys: 271 ms, total: 556 ms Wall time: 165 ms	RMSE of default RF Model: 0.0033786973865209393 CPU times: user 30 s, sys: 295 ms, total: 30.3 s Wall time: 7.78 s				

Default Gradient Boosted Decision Trees (GBDT)

%% time #Gradient Boosting for regression.	
GB builds an additive model in a forward stage-wise fashion;	
<pre>gbdt_reg = GradientBoostingRegressor(random_state=0) gbdt_reg.fit(X_train_prepared, Y_train.values) print("RMSE of default GBDT Model: ",get_model_rmse(gbdt_reg, full_pipeline,</pre>	X_train, Y_train))
RMSE of default GBDT Model: 0.006332032559214701	

CPU times: user 10.9 s, sys: 0 ns, total: 10.9 s Wall time: 10.9 s

Model (default parameters)	Accuracy (RMSE)	Time
Linear	low	low
GDBT	medium	high
RF	high	medium

Cross Validation Scores of RF and GBDT

CV Score of Linear Regression

scores = cross_val_score(lin_reg, X_train_prepared, Y_train, scoring = "neg_mean_squared_error", cv=5)
lin_rmse_scores = np.sqrt(-scores)
display_cv_scores(lin_rmse_scores)

Scores: [0.01328559 0.01195765 0.0121923 0.01214132 0.01212787] Mean: 0.012340946430903676 Standard deviation: 0.00047887469420691375

CV Score of Random Forest Regression

scores = cross_val_score(forest_reg, X_train_prepared, Y_train, scoring = "neg_mean_squared_error", cv=5)
forest_rmse_scores = np.sqrt(-scores)
display_cv_scores(forest_rmse_scores)

Scores: [0.00406476 0.00492766 0.00536735 0.00400481 0.00380739]
Mean: 0.0044343943083576965
Standard deviation: 0.0006046536760889458

CV Score of GBDT

scores = cross_val_score(gbdt_reg, X_train_prepared, Y_train, scoring = "neg_mean_squared_error", cv=5)
gbdt_rmse_scores = np.sqrt(-scores)
display_cv_scores(gbdt_rmse_scores)

Scores: [0.00669476 0.00684345 0.00741301 0.00654892 0.00647032]
Mean: 0.006794091938922407
Standard deviation: 0.00033475310988066275

Model (default parameters)	CV Score (lower is better)
Linear	High
GDBT	Low
RF	Low

Hyperparameter Tuning

<pre>%%time # Define a parameter grid and do hyperparameter ture """ param_grid = [{'n_estimators': [100], 'max_depth':[10,15,None]] """ param_grid = [{'n_estimators': [50, 100, 150, 200], 'max_depth':[10,15,None], 'max_features': ["auto", "sqrt", "log2", None], 'min_samples_leaf':[1, 5, 10, 15, 20]}] forest_reg_gs = RandomForestRegressor(n_jobs=-1) grid_search_forest = HalvingGridSearchCV(forest_reg_scoring='neg_mean_squared_return_train_score=True, grid_search_forest.fit(X_train_prepared, Y_train) print("Best_RF_estimator", grid_search_forest.best_oprint("RMSE of tuned RF model is :", get_model_rmsee Best_RF_estimator RandomForestRegressor(max_featuressRMSE of tuned RF model is : 0.0033875927206198746 CPU times: user 27.1 s, sys: 270 ms, total: 27.4 s</pre>	<pre>ing for RF model]), , , , , , , gs, param_grid, cv=5, i_error', verbose=0, n_jobs=-1) estimator_) (grid_search_forest, full_pipeline, X_train, Y_train)) ='sqrt', n_estimators=200, n_jobs=-1)</pre>	<pre># Define a parameter grid and do hyperparameter tuning for GBDT model """ param_grid = [{'n_estimators': [100], 'max_depth':[10,15,None]},] """ param_grid = [{'n_estimators': [50, 100, 150, 200], 'max_depth':[10,15,None], 'max_depth':[10,15,None], 'max_features': ["autor", "sqnt", "log2", None], 'min_samples_leaf':[1, 5, 10, 15, 20]}] gbdt_reg_gs = GradientBoostingRegressor() grid_search_gbdt = HalvingGridSearchCV(gbdt_reg_gs, param_grid, cv=5,</pre>					
Wall time: 6min 24s	Model	CV Score Improved?					
	GDBT	Yes					
	RF	Yes					

Quick Testing of Fitted Models

```
# plotting
some_data = X_train.iloc[:5]
some_labels = Y_train.iloc[:5]
some_data_prepared = full_pipeline.transform(some_data)
print("Predictions RF Model:", forest_reg.predict(some_data_prepared))
print("Predictions tuned RF Model:", grid_search_forest.predict(some_data_prepared))
print("Predictions GBDT Model", gbdt_reg.predict(some_data_prepared))
print("Predictions tuned GBDT Model", grid_search_gbdt.predict(some_data_prepared))
print("Labels: ", some_labels.transpose())
Predictions tuned RF Model: [0.00286248 0.00046561 0.00305074 0.00048138 0.07553159]
Predictions tuned RF Model: [0.00284831 0.00046582 0.00304563 0.00048168 0.0755103 ]
Predictions GBDT Model [0.00945122 0.00063459 0.00372003 0.00144793 0.07204102]
```

Predictions tuned GBDT Model [0.00336014 0.00045715 0.00280984 0.00049241 0.07551923]

Actual Cap 0.003023 0.000565 0.002592 0.000482 0.081947

RF and GBDT on Testing Data

Final Test

Final Test
Random Forest Metrics on Test Data
final_model = grid_search_forest.best_estimator_
X_test_prepared = full_pipeline.transform(X_test)
final_predictions = final_model.predict(X_test_prepared)
R2 = r2_score(Y_test, final_predictions)
print("R2 Score is : ", R2)
print("RMSE is:", get_model_rmse(grid_search_forest.best_estimator_, full_pipeline, X_test, Y_test))

R2 Score is : 0.9388278509745729 RMSE is: 0.006805427527653161

GBDT Metrics on Test Data
final_model = grid_search_gbdt.best_estimator_
X_test_prepared = full_pipeline.transform(X_test)
final_predictions = final_model.predict(X_test_prepared)
R2 = r2_score(Y_test, final_predictions)
print("R2 Score is : ", R2)
print("RMSE is:", get_model_rmse(grid_search_gbdt.best_estimator_, full_pipeline, X_test, Y_test))

R2 Score is : 0.8415378355758799 RMSE is: 0.0069953483921755

Model Inference

- Parse the netlist and generate net features
- Do a batch call to save time in inference
- Tweak/bound predicted values based on domain knowledge
- Generate SPEF file
- Monitor any errors/NaNs

Model Deployment

- Model can be deployed on cloud or distributed file system like HDFS/NFS
 - If you deploy on a cloud, you can send HTTP request and get response
 - Use caching to reduce network calls
 - Save hyperparameters as part of the model or do some sort of versioning
 - Reduce model size by pruning redundant branches/features
 - May be needed to reduce peak memory consumption in the flow

References

[1] "Machine Learning Engineering", Andriy Burkov

[2] B. Shook, P. Bhansali, C. Kashyap, C. Amin and S. Joshi, "MLParest: Machine Learning based Parasitic Estimation for Custom Circuit Design," *2020 57th ACM/IEEE Design Automation Conference (DAC)*, 2020, pp. 1-6, doi: 10.1109/DAC18072.2020.9218495.