
DEC 5 - 9, 2021 San Francisco, California



Hands-on ML: Post-layout Capacitance 
Estimation

Siddhartha Joshi and Brett Shook 

With

Sunder Kankipati, Prateek Bhansali, Chandramouli Kashyap

Intel Corporation



Tutorial Outline

• Introduction: 
• Custom circuit design flow and parasitic estimation 

• Machine Learning(ML) Pipeline for Parasitic Estimation
• Data collection, preparation, feature engineering, training, etc. 

• Accompanying paper: B. Shook, P. Bhansali, C. Kashyap, C. Amin and S. Joshi, 
"MLParest: Machine Learning based Parasitic Estimation for Custom Circuit 
Design," 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 
1-6, doi: 10.1109/DAC18072.2020.9218495.
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Problem Definition

•Post-layout design metrics impacted by 
interconnect parasitic and device layout 
effects

•Pre-layout vs. post-layout simulation 
results differ up to 250%*

•Post-lay/pre-lay iterations expensive
• Causes delay in product schedule

Schematic vs Post-Layout Simulations of 
Analog Circuits in Intel 10nm Technology [MLParest, DAC 2020]

https://ieeexplore.ieee.org/document/9218495


Parasitic Estimation

•Designers routinely guess and put explicit resistor and 
capacitors to model interconnect effects
• Manual and require a lot of experience
• Need to maintain separate schematic 

•ALS is the holy grail and an active area of research

•Our solution: Automatically estimate parasitics in pre-layout 
phase and avoid iterations
• Can we use machine learning? Yes. 



MLParest: Machine Learning Based 
Parasitic Estimation

•Given a pre-layout schematic 
• Leverage existing data and estimate interconnect parasitics
• Interconnect parasitics should be usable in standard circuit 

simulation flow
• Should not increase SPICE runtime



MLParest Design/Modeling Choices

• What to learn from post-layout extracted netlists? 
• Leverage linear system theory to model POLO net approximately

• Effective time constant 
• Total incident cap 

• How to represent estimated interconnects?
• Predict effective time constant and total incident cap
• Use SPEF format to represent a “topology”
• Topology:

• Star vs delta network 
• Star network does not increase dense nodes
• Delta network would increase dense nodes

• The number of nodes increased is linear to the number of
     MOS devices
• Simulation runtime increase is a modest 20%

 

 



Machine Learning Project Life Cycle

Problem definition 
& domain modeling

Data 
collection, 

exploration, 
preparation

Feature 
engineering

Model training

Model 
evaluation

Model deployment 
& inference 

Model
 maintenance

Life Cycle of an ML Project [1]



• A crawler to go through archived design database of pre and post layout netlists

• Gather attributes for each net in every circuit
• Features: 

• Number of MOS
• Number of PMOS
• Number of NMOS
• Number of other devices
• Width
• Length
• Number of ports
• IO_PIN
• Width of NMOS devices
• Width of PMOS devices

• Output variables:
• Total Net Capacitance
• Time Constant/effective resistance 

Parasitic Estimation using ML 

y
#MOS #PMOS #NMOS   …  IO_PIN … # Ports Total Net Cap 

4 2 2   …    0 ... 0 1.123 fF

x



Hands on ML: Step-by-Step Example

• Goal: Exposition of ML in EDA (MLParest)
• Does not cover: 

• Data collection

• Resistance estimation

• Files: https://github.com/prateek-bhansali/parasitic_estimation_tutorial
• Normalized input data for training

• Jupyter Notebook



Data Exploration

• Look at min, max, 
standard deviation, 
correlation, etc. of the 
dataset
• Helps in flushing out 

bugs, modeling, 
figuring out new 
features, outliers, 
removing 
uncorrelated features



Data Exploration: Correlation



Data Preparation 

• Identify target and input features



Data Preparation

•  Outlier detection
• Helps in eliminating dirty nets from opens/shorts
• Used RANSAC algorithm

•  Normalization 
• Different features are on different scale: w, l, number of MOS
• Min-max scaling or standard scaler scaling outlier
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ta

l C
ap

Net length



Data Preparation: Outlier Detection 



Feature Engineering

•Option A: Manually engineer non-linear features and use them in a 
linear regression ML model
• Requires human resources and domain knowledge

•Option B: Use inherently non-linear models like Random Forest(RF), 
Gradient Boosted Decision Trees (GBDT) or Neural Network (NN)
• Does not require human intervention
• RF led to great results



Train/Validation/Test Split

•Traditionally, data is split in train (80%), validation (10%) and 
testing(10%) sets 
• Labeled data is not massive, so we only do training/testing split in 

MLParest
• Use K-Fold Cross Validation (CV) for tuning parameters
• Can we split based on circuits instead? 

• 80% of circuits (and their nets) are used for training and rest 20% are used for 
testing



Data Normalization and One-hot 
Encoding using Pipelines



Model Training

Model Type Training Speed Training Data 
needed

Inference Speed Accuracy

Linear Models Fastest Low Fastest Low

Ensemble 
Methods (GBDT, 
RF)

Fast (RF can be 
parallelized)

Moderate Fast Great

Neural Networks Slow High Slower Best

• Selection of model: factor in complexity, inference/training 
time, data volume, interpretability,  fitting…
•We found RF/GBDT to be robust to overfitting in practice

•Training time was not a concern as amount of data is not 
massive



Model Evaluation Metrics
•How to check if model is performing well?

• Offline/Batch Metric: a proxy for simulation accuracy
• Classification tasks: MLParest is not classification.

• Precision, recall, F1 score 

• Regression: We use RMSE for MLParest 
• Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?

• Try both to see what works best for your application

• Sci-kit has non-optimal implementation of MAE as of June 2021 – runs slow.

• Online Metric: 
• Simulation accuracy: available when SPICE simulations are run with post-layout data 



Default Linear, RF and GBDT Accuracy

Model (default parameters) Accuracy (RMSE) Time

Linear low low

GDBT medium high

RF high medium



Cross Validation Scores of RF and GBDT

Model 
(default parameters)

CV Score 
(lower is better)

Linear High

GDBT Low

RF Low



Hyperparameter Tuning

Model CV Score  Improved?

GDBT Yes

RF Yes



Quick Testing of Fitted Models

Actual Cap



RF and GBDT on Testing Data



Model Inference
• Parse the netlist and generate net features
• Do a batch call to save time in inference
• Tweak/bound predicted values based on domain knowledge
• Generate SPEF file
• Monitor any errors/NaNs

Start: Input 
Netlist

Parsing Net Features Batch Model Call

SPEF File End: Simulation 



Model Deployment

•Model can be deployed on cloud or distributed file system like 
HDFS/NFS
• If you deploy on a cloud, you can send HTTP request and get 

response
• Use caching to reduce network calls
• Save hyperparameters as part of the model or do some sort of 

versioning
• Reduce model size by pruning redundant branches/features

• May be needed to reduce peak memory consumption in the flow
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