
DEC 5 - 9, 2021 San Francisco, California

Hands-on ML: Post-layout Capacitance
Estimation

Siddhartha Joshi and Brett Shook

With

Sunder Kankipati, Prateek Bhansali, Chandramouli Kashyap

Intel Corporation

Tutorial Outline

• Introduction:
• Custom circuit design flow and parasitic estimation

• Machine Learning(ML) Pipeline for Parasitic Estimation
• Data collection, preparation, feature engineering, training, etc.

• Accompanying paper: B. Shook, P. Bhansali, C. Kashyap, C. Amin and S. Joshi,
"MLParest: Machine Learning based Parasitic Estimation for Custom Circuit
Design," 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp.
1-6, doi: 10.1109/DAC18072.2020.9218495.

Custom Circuit Design Flow

Schematic
Design/Migration/

Cleanup

Pre-layout Design
and Simulation

Layout and
Extraction

Post-Layout
Simulation

Problem Definition

•Post-layout design metrics impacted by
interconnect parasitic and device layout
effects

•Pre-layout vs. post-layout simulation
results differ up to 250%*

•Post-lay/pre-lay iterations expensive
• Causes delay in product schedule

Schematic vs Post-Layout Simulations of
Analog Circuits in Intel 10nm Technology [MLParest, DAC 2020]

https://ieeexplore.ieee.org/document/9218495

Parasitic Estimation

•Designers routinely guess and put explicit resistor and
capacitors to model interconnect effects
• Manual and require a lot of experience
• Need to maintain separate schematic

•ALS is the holy grail and an active area of research

•Our solution: Automatically estimate parasitics in pre-layout
phase and avoid iterations
• Can we use machine learning? Yes.

MLParest: Machine Learning Based
Parasitic Estimation

•Given a pre-layout schematic
• Leverage existing data and estimate interconnect parasitics
• Interconnect parasitics should be usable in standard circuit

simulation flow
• Should not increase SPICE runtime

MLParest Design/Modeling Choices

• What to learn from post-layout extracted netlists?
• Leverage linear system theory to model POLO net approximately

• Effective time constant
• Total incident cap

• How to represent estimated interconnects?
• Predict effective time constant and total incident cap
• Use SPEF format to represent a “topology”
• Topology:

• Star vs delta network
• Star network does not increase dense nodes
• Delta network would increase dense nodes

• The number of nodes increased is linear to the number of
 MOS devices
• Simulation runtime increase is a modest 20%

Machine Learning Project Life Cycle

Problem definition
& domain modeling

Data
collection,

exploration,
preparation

Feature
engineering

Model training

Model
evaluation

Model deployment
& inference

Model
 maintenance

Life Cycle of an ML Project [1]

• A crawler to go through archived design database of pre and post layout netlists

• Gather attributes for each net in every circuit
• Features:

• Number of MOS
• Number of PMOS
• Number of NMOS
• Number of other devices
• Width
• Length
• Number of ports
• IO_PIN
• Width of NMOS devices
• Width of PMOS devices

• Output variables:
• Total Net Capacitance
• Time Constant/effective resistance

Parasitic Estimation using ML

y
#MOS #PMOS #NMOS … IO_PIN … # Ports Total Net Cap

4 2 2 … 0 ... 0 1.123 fF

x

Hands on ML: Step-by-Step Example

• Goal: Exposition of ML in EDA (MLParest)
• Does not cover:

• Data collection

• Resistance estimation

• Files: https://github.com/prateek-bhansali/parasitic_estimation_tutorial
• Normalized input data for training

• Jupyter Notebook

Data Exploration

• Look at min, max,
standard deviation,
correlation, etc. of the
dataset
• Helps in flushing out

bugs, modeling,
figuring out new
features, outliers,
removing
uncorrelated features

Data Exploration: Correlation

Data Preparation

• Identify target and input features

Data Preparation

• Outlier detection
• Helps in eliminating dirty nets from opens/shorts
• Used RANSAC algorithm

• Normalization
• Different features are on different scale: w, l, number of MOS
• Min-max scaling or standard scaler scaling outlier

To
ta

l C
ap

Net length

Data Preparation: Outlier Detection

Feature Engineering

•Option A: Manually engineer non-linear features and use them in a
linear regression ML model
• Requires human resources and domain knowledge

•Option B: Use inherently non-linear models like Random Forest(RF),
Gradient Boosted Decision Trees (GBDT) or Neural Network (NN)
• Does not require human intervention
• RF led to great results

Train/Validation/Test Split

•Traditionally, data is split in train (80%), validation (10%) and
testing(10%) sets
• Labeled data is not massive, so we only do training/testing split in

MLParest
• Use K-Fold Cross Validation (CV) for tuning parameters
• Can we split based on circuits instead?

• 80% of circuits (and their nets) are used for training and rest 20% are used for
testing

Data Normalization and One-hot
Encoding using Pipelines

Model Training

Model Type Training Speed Training Data
needed

Inference Speed Accuracy

Linear Models Fastest Low Fastest Low

Ensemble
Methods (GBDT,
RF)

Fast (RF can be
parallelized)

Moderate Fast Great

Neural Networks Slow High Slower Best

• Selection of model: factor in complexity, inference/training
time, data volume, interpretability, fitting…
•We found RF/GBDT to be robust to overfitting in practice

•Training time was not a concern as amount of data is not
massive

Model Evaluation Metrics
•How to check if model is performing well?

• Offline/Batch Metric: a proxy for simulation accuracy
• Classification tasks: MLParest is not classification.

• Precision, recall, F1 score

• Regression: We use RMSE for MLParest
• Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?

• Try both to see what works best for your application

• Sci-kit has non-optimal implementation of MAE as of June 2021 – runs slow.

• Online Metric:
• Simulation accuracy: available when SPICE simulations are run with post-layout data

Default Linear, RF and GBDT Accuracy

Model (default parameters) Accuracy (RMSE) Time

Linear low low

GDBT medium high

RF high medium

Cross Validation Scores of RF and GBDT

Model
(default parameters)

CV Score
(lower is better)

Linear High

GDBT Low

RF Low

Hyperparameter Tuning

Model CV Score Improved?

GDBT Yes

RF Yes

Quick Testing of Fitted Models

Actual Cap

RF and GBDT on Testing Data

Model Inference
• Parse the netlist and generate net features
• Do a batch call to save time in inference
• Tweak/bound predicted values based on domain knowledge
• Generate SPEF file
• Monitor any errors/NaNs

Start: Input
Netlist

Parsing Net Features Batch Model Call

SPEF File End: Simulation

Model Deployment

•Model can be deployed on cloud or distributed file system like
HDFS/NFS
• If you deploy on a cloud, you can send HTTP request and get

response
• Use caching to reduce network calls
• Save hyperparameters as part of the model or do some sort of

versioning
• Reduce model size by pruning redundant branches/features

• May be needed to reduce peak memory consumption in the flow

References

[1] “Machine Learning Engineering”, Andriy Burkov

[2] B. Shook, P. Bhansali, C. Kashyap, C. Amin and S. Joshi,
"MLParest: Machine Learning based Parasitic Estimation for
Custom Circuit Design," 2020 57th ACM/IEEE Design
Automation Conference (DAC), 2020, pp. 1-6, doi:
10.1109/DAC18072.2020.9218495.

