Q] ESIGN
AUTOMATION

FROM CHIPS TO SYSTEMS — LEARN TODAY, CREATE TOMORROW

DEC5-9,2021 < San Francisco, California

Lo

Hands-on ML: Post-layout Capacitance
Estimation

Siddhartha Joshi and Brett Shook

With

Sunder Kankipati, Prateek Bhansali, Chandramouli Kashyap

Intel Corporation

Tutorial Outline

* Introduction:
e Custom circuit design flow and parasitic estimation

* Machine Learning(ML) Pipeline for Parasitic Estimation
 Data collection, preparation, feature engineering, training, etc.

 Accompanying paper: B. Shook, P. Bhansali, C. Kashyap, C. Amin and S. Joshi,
"MLParest: Machine Learning based Parasitic Estimation for Custom Circuit
Design," 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp.
1-6, doi: 10.1109/DAC18072.2020.9218495.

Lol

Custom Circuit Designh Flow

Schematic
Design/Migration/
Cleanup

Pre-layout Design Layout and Post-Layout
and Simulation Extraction Simulation

Problem Definition

Pre-Layout vs. Post-Layout Simulation Measurement

* Post-layout design metrics impacted by Crut?
interconnect parasitic and device layout A
effects) et § P
e Pre-layout vs. post-layout simulation S
results differ up to 250%* . S S SR N

Error (%)

* Post-lay/pre-lay iterations expensive
* Causes delay in product schedule

Schematic vs Post-Layout Simulations of
Analog Circuits in Intel 10nm Technology [MLParest, DAC 2020]

https://ieeexplore.ieee.org/document/9218495

Parasitic Estimation

* Designers routinely guess and put explicit resistor and
capacitors to model interconnect effects
* Manual and require a lot of experience
* Need to maintain separate schematic

* ALS is the holy grail and an active area of research

* Our solution: Automatically estimate parasitics in pre-layout
phase and avoid iterations
e Can we use machine learning? Yes.

¢

MLParest: Machine Learning Based
Parasitic Estimation

* Given a pre-layout schematic
* Leverage existing data and estimate interconnect parasitics

* Interconnect parasitics should be usable in standard circuit
simulation flow

e Should not increase SPICE runtime

A
| &4

Net A

v
Vi3 |

¢

MLParest Design/Modeling Choices

* What to learn from post-layout extracted netlists?
* Leverage linear system theory to model POLO net approximately
* Effective time constant
* Total incident cap
* How to represent estimated interconnects?
* Predict effective time constant and total incident cap
» Use SPEF format to represent a “topology”
* Topology:
» Star vs delta network
» Star network does not increase dense nodes
* Delta network would increase dense nodes
* The number of nodes increased is linear to the number of
MOS devices
e Simulation runtime increase is a modest 20%

P P;

r
g £ L <
T 3

I T
R S,
T —_ - - -
N P p;2 D2
Terr
Repp =

Lol

Machine Learning Project Life Cycle

Data
Problem definition collection, Feature
& domain modeling exploration, engineering
preparation

Model training

Model Model deployment Model
maintenance & inference evaluation

Life Cycle of an ML Project [1]

Parasitic Estimation using ML

* A crawler to go through archived design database of pre and post layout netlists

* Gather attributes for each net in every circuit

* Features:

Number of MOS
Number of PMOS
Number of NMOS
Number of other devices
Width

Length

Number of ports

10_PIN

Width of NMOS devices
Width of PMOS devices

e Qutput variables:

Total Net Capacitance
Time Constant/effective resistance

T

Net A

—" M4 —" M3
\ PRE-LAYOUT
POST-LAYOUT

x___‘\ /

Total Net Cap
o 1asf

Hands on ML: Step-by-Step Example

e Goal: Exposition of ML in EDA (MLParest)

* Does not cover:
 Data collection
* Resistance estimation
* Files: https://github.com/prateek-bhansali/parasitic_estimation_tutorial
* Normalized input data for training
* Jupyter Notebook

Data Exploration

e Look at min, max,
standard deviation,
correlation, etc. of the
dataset

* Helps in flushing out
bugs, modeling,
figuring out new
features, outliers,
removing
uncorrelated features

Statistics of Numerical Data

df .describe()

cap f1 f2 f3 f4 f5 f6 17

couni 137505.000000 137505.000000 137505.000000 137505.000000 137505.000000 137505.000000 137505.000000 137505.000000
mean 0.007995 0.002204 0.080579 0.001112 0.000554 0.000711 0.001249 0.002838
sid 0.025053 0.009111 0.272188 0.006975 0.005343 0.005152 0.011249 0.012596
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.000544 0.000710 0.000000 0.000177 0.000073 0.000103 0.000000 0.000512
50% 0.001488 0.000993 0.000000 0.000302 0.000146 0.000165 0.000000 0.001025
75% 0.006313 0.001561 0.000000 0.00078&1 0.000366 0.000413 0.000558 0.002049
max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Data Exploration: Correlation

corr_matrix = df.corr()

corr_matrix["cap"]

cap
£
f2
f3
f4
f5
f6
f7
f8
9
fle
11
f12
f13
f14
f15
fl6
£17
18
f19
f20
21
f22

Name: cap, dtype: floaté4

OO0 0O OO®OO®O K

(]

.000000
.622855
.111688
+:539515
.364528
.423528
.323822
.455826
.423008
.455034
.038039
.422737
.479989
.542589
.421529
.311896
.396298
.003178
.000856
.028591
.620966
.613285
.562858

ax = df.plot(kind="scatter", x="f1", y="cap")

1.0

0.8 1

0.6 1

cap

0.4 1

0.2

0.0 1

ax = df.plot(kind="scatter", x="f18", y="cap")

1.0 1

0.8 1

0.6 1

cap

0.2 1

0.0 1

0.4 1

Data Preparation

* |dentify target and input features

Prepare the Data For Machine Learning Algorithms

target_cols = ['cap']

numerical attributes
num_attribs = ['f1','f2','f3','f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'fle', 'fi1', 'f12', 'f13', 'fi4', 'f15', 'fie', 'f17', 'f18', 'f19',
'£20', 'f21', 'f22']

categorical attributes (we do not have any in this case)
cat_attribs = []

get the meaningful attributes and target_cols
circuit = df[num_attribs+cat_attribs+target_cols].copy()

Data Preparation

e Qutlier detection

* Helps in eliminating dirty nets from opens/shorts
* Used RANSAC algorithm

* Normalization

 Different features are on different scale: w, |, number of MOS

* Min-max scaling or standard scaler scaling

Cap

_outlier

Tota

Net length '

0 Data Preparation: Outlier Detection

Outliner Detection: Use RANSAC (RANdom SAmple Consensus) algorithm.

def filter_outliers(X, Y, max_trials=500, sigma_scale=3):

X_d = X.copy()
Y_d = Y.copy()
print("Length of Original data: ", len(X_d))
min_samples = np.floor(len(X_d)/2)
Imr = linear_model.RANSACRegressor(base_estimator=linear_model.LinearRegression(copy_X=True, normalize=True),
min_samples=min_samples, residual_threshold=sigma_scale*np.std([Y]), max_trials=max_trials, random_state=137)

model = Imr.fit(X_d, Y)
inlier_mask = lmr.inlier_mask_
outlier_mask = np.logical not(inlier_mask)

X
Y

X_d[inlier_mask].copy()
Y_d[inlier_mask].copy()

print("“Length of learing data: ", len(X))
print("Percentage of original data: ", len(X)/len(X_d))
print("Number of outliers found: ", len(X_d)-len(X))

return X, Y
circuit[num_attribs+cat_attribs]
circuit[target_cols]

, Y = filter_outliers(X, Y)

X
X
X

Length of Original data: 137505

Length of learing data: 136607

Percentage of original data: ©.9934693283880586
Number of outliers found: 898

Feature Engineering

* Option A: Manually engineer non-linear features and use them in a
linear regression ML model

* Requires human resources and domain knowledge

* Option B: Use inherently non-linear models like Random Forest(RF),
Gradient Boosted Decision Trees (GBDT) or Neural Network (NN)

* Does not require human intervention
* RF led to great results

cap f1 12 13 14 15 16 17 8 19 .. f13 14 115 f16 117 118 119 120

0 0.077530 0.023840 1 0.014869 0.006585 0.009917 0.0 0.000000 0.000000 0.016164 .. 0.025862 0.000000 0.0 0.000000 0.0 0.0 0.0 0.023698 0

1 0.022282 0.007805 0 0.001952 0.000878 0.001322 0.0 0.003586 0.001870 0.001616 ... 0.006466 0.009021 0.0 0.004187 0.0 0.0 0.0 0.007805 O.

Train/Validation/Test Split

* Traditionally, data is split in train (80%), validation (10%) and
testing(10%) sets

* Labeled data is not massive, so we only do training/testing split in
MLParest

e Use K-Fold Cross Validation (CV) for tuning parameters

* Can we split based on circuits instead?

* 80% of circuits (and their nets) are used for training and rest 20% are used for
testing

Data Normalization and One-hot
Encoding using Pipelines

Transformation Pipelines

numerical pipeline object -- you may do data imputation here
-- we will do standard scaler transformation to our data
num_pipeline = Pipeline([('std scaler', StandardScaler())])

full pipeline with one-hot encoding of categorical 1inputs
full pipeline = ColumnTransformer([

("num”, num_pipeline, num_attribs),

("cat"”, OneHotEncoder(), cat_attribs),

15

X_train_prepared = full pipeline.fit _transform(X_train)

Model Training

* Selection of model: factor in complexity, inference/training
time, data volume, interpretability, fitting...
* We found RF/GBDT to be robust to overfitting in practice

* Training time was not a concern as amount of data is not

massive

Model Type Training Speed Training Data Inference Speed | Accuracy
needed

Linear Models Fastest Fastest

Ensemble Fast (RF can be Moderate Fast Great

Methods (GBDT, parallelized)

RF)

Neural Networks Slow High Slower Best

Model Evaluation Metrics

* How to check if model is performing well?

 Offline/Batch Metric: a proxy for simulation accuracy
* Classification tasks: MLParest is not classification.
* Precision, recall, F1 score
* Regression: We use RMSE for MLParest
* Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?
* Try both to see what works best for your application
* Sci-kit has non-optimal implementation of MAE as of June 2021 — runs slow.
* Online Metric:

* Simulation accuracy: available when SPICE simulations are run with post-layout data

o Default Linear, RF and GBDT Accuracy

Default Linear Regression Model Default Random Forest (RF) Regression

%ktime

%%time
Ordinary least squares Linear Regression.

Random Forest Regressor

LinearRegression fits a linear model with coefficients w = (w1, ..., wp)
to minimize the residual sum of squares between the observed targets in
the dataset, and the targets predicted by the linear approximation.

A random forest is a meta estimator that fits a number of classifying
decision trees on various sub-samples of the dataset and uses averaging
to improve the predictive accuracy and control over-fitting.

forest_reg = RandomForestRegressor(n_jobs=-1)
lin_reg = LinearRegression()

; : 5 . forest_reg.fit(X_train_prepared, Y_train.values)
lin_reg.fit(X_train_prepared, Y_train)) o)] print ("RMSE of default RF Model: ",get model rmse(forest reg, full pipeline, X train, Y_train))
print("RMSE of default Linear Model: ", get_model _rmse(lin_reg, full pipeline, X train, Y_train))
X RMSE of default RF Model: ©.0033786973865209393
RMSE of default Linear Model: ©.012109838428412388 CPU times: user 30 s, sys: 295 ms, total: 30.3 s
CPU times: user 284 ms, sys: 271 ms, total: 556 ms Wall time: 7.78 s
Wall time: 165 ms

Default Gradient Boosted Decision Trees (GBDT)

%ktime
#Gradient Boosting for regression.

‘G';"builds an additive model in a forward stage-wise fashion; MOdeI (defaUIt parameterS) Accuracy (RMSE) Time

gbdt_reg = GradientBoostingRegressor(random_state=0)

gbdt_reg.fit(X_train_prepared, Y_train.values) Llnear |OW IOW
print("RMSE of default GBDT Model: ",get model rmse(gbdt_reg, full pipeline, X_train, Y_train))
RMSE of default GBDT Model: ©.006332032559214701 GDBT medlum hlgh

CPU times: user 10.9 s, sys: @ ns, total: 10.9 s
Wall time: 10.9 s

RF high medium

Cross Validation Scores of RF and GBDT

CV Score of Linear Regression

Lo

scores = cross_val_score(lin_reg, X_train_prepared, Y_train, scoring = "neg_mean_squared_error", cv=5)
lin_rmse_scores = np.sqrt(-scores)
display cv_scores(lin_rmse_scores)

Scores: [0.01328559 0.01195765 ©0.0121923 0.01214132 0.01212787]
Mean: ©.012340946430903676
Standard deviation: ©.00047887469420691375

Model CV Score

CV Score of Random Forest Regression (default parameters) (lower is better)

Linear
GDBT Low
RF Low

scores = cross_val_score(forest_reg, X train_prepared, Y_train, scoring = "neg_mean_squared_error", cv=5)
forest_rmse_scores = np.sqrt(-scores)
display cv_scores(forest rmse_scores)

Scores: [0.00406476 ©.00492766 ©.00536735 0.00400481 0.00380739]
Mean: ©.0044343943083576965
Standard deviation: ©.0006046536760889458

CV Score of GBDT

scores = cross_val_score(gbdt _reg, X train_prepared, Y_train, scoring = "neg mean_squared_error", cv=5)
gbdt_rmse_scores = np.sqrt(-scores)
display cv_scores(gbdt rmse_scores)

Scores: [0.00669476 0.00684345 0.00741301 0©.00654892 0.00647632]
Mean: 0.006794091938922407
Standard deviation: 0.00033475310988066275

Hyperparameter Tuning

%%time

Define a parameter grid and do hyperparameter tuning for RF model

param_grid = [
{'n_estimators': [100], 'max_depth':[10,15,None]},

param_grid = [
{'n_estimators': [50, 100, 150, 200],
‘max_depth':[10,15,None],
'max_features': ["auto", "sqrt", "log2", None],
‘min_samples_leaf':[1, 5, 10, 15, 20]}
]

forest_reg_gs = RandomForestRegressor(n_jobs=-1)

grid_search_forest = HalvingGridSearchcv(forest_reg_gs, param_grid, cv=5,
scoring="neg_mean_squared_error',
return_train_score=True, verbose=0, n_jobs=-1)

grid_search_forest.fit(X_train_prepared, Y_train)
print("Best RF estimator", grid search_forest.best_estimator_)
print("RMSE of tuned RF model is :", get model rmse(grid_search_forest, full pipeline, X_train, Y_train))

Best RF estimator RandomForestRegressor(max_features='sqrt', n_estimators=200, n_jobs=-1)
RMSE of tuned RF model is : ©.0033875927206198746

CPU times: user 27.1 s, sys: 270 ms, total: 27.4 s

Wall time: é6min 24s

GDBT
RF

%htime
Define a parameter grid and do hyperparameter tuning for GBDT model
param_grid = [

{'n_estimators': [100], 'max_depth':[10,15,None]},

param_grid = [
{'n_estimators': [50, 100, 150, 200],
'max_depth':[10,15,None],
'max_features': ["auto", "sqgrt", "log2", None],
‘min_samples_leaf':[1, 5, 10, 15, 20]}
]

gbdt_reg _gs = GradientBoostingRegressor()

grid_search_gbdt = HalvingGridSearchcv(gbdt reg gs, param_grid, cv=5,
scoring="neg_mean_squared_error’,
return_train_score=True, verbose=0, n_jobs=-1)

grid_search_gbdt.fit(X_train_prepared, Y_train)
print("Best GBDT estimator", grid_search_gbdt.best_estimator_)
print("RMSE of tuned GBDT model is ", get _model rmse(grid_search_gbdt, full_pipeline, X_train, Y_train))

Best GBDT estimator GradientBoostingRegressor(max_depth=10, max_features='sqrt')
RMSE of tuned GBDT model is ©.003281195598028159

CPU times: user 15 s, sys: 780 ms, total: 15.8 s

Wall time: 4min 46s

CV Score Improved?

Yes

Yes

Quick Testing of Fitted Models

plotting

some_data = X _train.iloc[:5]

some_labels = Y _train.iloc[:5]

some_data prepared = full pipeline.transform(some data)

print("Predictions RF Model:", forest reg.predict(some_data prepared))
print("Predictions tuned RF Model:", grid search forest.predict(some data prepared))
print("Predictions GBDT Model”, gbdt reg.predict(some data prepared))

print("Predictions tuned GBDT Model"”, grid search_gbdt.predict(some_data prepared))
print("Labels: ", some_labels.transpose())

Predictions RF Model: [0.00286248 0.00046561 ©.00305074 0.00048138 0.07553159]
Predictions tuned RF Model: [0.00284831 ©.00046582 ©.00304563 0.00048168 0.0755103 |
Predictions GBDT Model [0.00945122 ©.00063459 ©.00372003 0.00144793 ©.07204102 |

Predictions tuned GBDT Model [©.00336014 0.00045715 ©.00280984 0.00049241 ©.07551923]

©.003023 0.000565 ©0.002592 0.000482 0.081947

RF and GBDT on Testing Data

Final Test

Final Test

Random Forest Metrics on Test Data

final_model = grid_search_forest.best_estimator_

X_test_prepared = full pipeline.transform(X_test)

final predictions = final model.predict(X_test_prepared)

R2 = r2_score(Y_test, final predictions)

print("R2 Score is : ", R2)

print("RMSE is:", get model rmse(grid_search_forest.best_estimator_, full pipeline, X test, Y_test))

R2 Score is : ©.9388278509745729
RMSE is: ©.006805427527653161

GBDT Metrics on Test Data

final model = grid_search_gbdt.best estimator_

X_test _prepared = full pipeline.transform(X_ test)

final predictions = final model.predict(X_test prepared)

R2 = r2_score(Y_test, final predictions)

print("R2 Score is : ", R2)

print("RMSE is:", get model rmse(grid_search_gbdt.best estimator_, full pipeline, X test, Y_test))

R2 Score is : ©.8415378355758799
RMSE is: ©.0069953483921755

o
©

o
o

Predicted Cap
o o
N L=

L4
<}

RF Predictions on Testing Data

0.0 0.2 0.4 0.6 0.8
Actual Cap

GBDT Predictions on Testing Data

e
®

2
o

Predicted Cap
o o
N =

=
<}

0.0 0.2 0.4 0.6 0.8
Actual Cap

Model Inference

 Parse the netlist and generate net features

* Do a batch call to save time in inference

* Tweak/bound predicted values based on domain knowledge
* Generate SPEF file

* Monitor any errors/NaNs

Start: Input
Netlist

Parsing Net Features Batch Model Call

End: Simulation SPEF File

Model Deployment

* Model can be deployed on cloud or distributed file system like
HDFS/NFS

* |f you deploy on a cloud, you can send HTTP request and get
response

* Use caching to reduce network calls

* Save hyperparameters as part of the model or do some sort of
versioning

* Reduce model size by pruning redundant branches/features
* May be needed to reduce peak memory consumption in the flow

References

[1] “Machine Learning Engineering”, Andriy Burkov

[2] B. Shook, P. Bhansali, C. Kashyap, C. Amin and S. Joshi,
"MLParest: Machine Learning based Parasitic Estimation for
Custom Circuit Design," 2020 57th ACM/IEEE Design
Automation Conference (DAC), 2020, pp. 1-6, doi:
10.1109/DAC18072.2020.9218495.

