
Preprint

MLParest: Machine Learning based Parasitic

Estimation for Custom Circuit Design
Brett Shook (brett.w.shook@intel.com), Prateek Bhansali (prateek.bhansali@intel.com),

Chandramouli Kashyap (chandramouli.v.kashyap@intel.com), Chirayu Amin (chirayu.s.amin@intel.com),

Siddhartha Joshi (siddhartha.joshi@intel.com)

Intel Corporation, Hillsboro, OR, USA

Abstract—A novel machine learning based parasitic estimation

(MLParest) method for pre-layout custom circuit design is

presented. It reduces the error between pre-layout and post-layout

circuit simulation from 37% to 8% on average for different

measurements across a variety of analog circuits. MLParest can

thus greatly reduce the number of iterations between pre-layout

and post-layout design phases. The key contributions of this work

are a machine learning based approach to parasitic estimation and

a push-button model training framework, scalable across different

technology nodes. To the best of our knowledge, a machine

learning based framework of parasitic estimation is an industry

first.

Keywords—parasitic estimation, resistance, capacitance, circuit

simulation, machine learning, post-layout, analog design

I. INTRODUCTION

Traditional analog IP development cycles start with schematic
design, which is based on the architecture and specifications
expected of an analog block. After initial sizing, analog
designers perform performance, reliability and variation
analysis using a SPICE-like circuit simulator. If the circuit fails
to meet a specification across any process, temperature or
voltage corner, analog designers must resize the circuit in the
schematic. This phase is known as pre-layout design. Once
specifications are met in the schematic, a layout of circuit
schematic is drawn. During the layout, a team of mask designers,
translates the abstract schematic to a technology specific format
which can be fabricated. This process is time consuming, often
taking anywhere from days to weeks, and is expected to be even
longer in the future as design rules of advanced technology
nodes become increasingly complex. Once the layout is ready,
circuit designers perform interconnect parasitic (resistance and
capacitance) extraction. Next, using the extracted parasitics
back-annotated into the schematic design netlist, post-layout
SPICE simulations are performed. Only at this stage, if all the
specifications of the analog block are met, the design cycle
completes. If any specification is not met in the post-layout
simulations, the schematic is resized or rearchitected and sent
back for layout and extraction causing several iterations between
schematic and mask design phases.

Usually, the performance of post-layout circuits is widely
different from pre-layout circuits due to the addition of
interconnect parasitics and complex device layout effects in
post-layout circuits. To illustrate this, we performed simulations
on a set of representative analog IP blocks on a 10 nm
technology across design metrics such as delay, rise/fall time,
duty cycle, frequency, bandwidth, DC gain, leakage current and

power. Fig. 1 shows the differences in measurements between
pre-layout and post-layout simulations for this set of 10nm
analog circuits. This collection of circuits includes a duty-cycle
corrector, PLL clock generator, CTLE, Op-Amp, sense-
amplifier, TX-driver, level-shifter, ring oscillator, and a PLL
delay line. We plot the average and maximum of absolute
values of error (%) across a set of measurements for each circuit
in order to avoid cancellation of positive and negative errors.
From the plot, we can see that there is a huge difference in the
performance of the circuits when interconnect parasitics are not
included in the simulations. This leads to multiple iterations
between the pre-layout and post-layout phases leading to
resizing and layout fixes. To circumvent this problem, circuit
designers often put excessive margins in specifications as guard
bands in pre-layout design phase. This leads to sub-optimal
designs in terms of power, performance, and area.

Fig. 1. Bar plot showing the error in pre-layout simulation measurements

when compared to the corresponding post-layout simulation measurements.

To address this issue, we present our machine learning based
parasitic estimation framework called MLParest in this paper.
MLParest provides an accurate estimate of expected post-layout
interconnect parasitics in the pre-layout design phase. Note that
both the interconnect resistance and capacitance can be
estimated using MLParest to aid circuit designers. This allows
designers to incorporate the interconnect effects on performance
of the circuit during the schematic design stage. This reduces the
gap between post-layout and pre-layout simulation results which
helps reduce design iterations between these two phases.
MLParest can thus lead to a much faster turn-around time for
analog designs.

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Circuit-1

Circuit-2

Circuit-3

Circuit-4

Circuit-5

Circuit-6

Circuit-7

Circuit-8

Circuit-9

Error (%)

Pre-Layout vs. Post-Layout Simulation Measurement

Max Error

Average Error

The rest of the paper is organized as follows. Section II discusses
background and related work. In Section III, we present our
machine learning based parasitic estimation flow. Section IV
summarizes the results. Section V concludes this paper.

II. RELATED WORK

There are no known tools currently in the Electronic Design
Automation (EDA) industry which predict interconnect parasitic
RC for pre-layout circuits based on just the information
contained in the schematics. Prior work [1], [2] has proposed
the use of floor-planning, placement, and routing information in
addition to schematic information to estimate interconnect
parasitics. However, this information is not easily available to
analog designers in the early stages of design, which limits its
usage. There is a growing body of research on automatic
generation of analog layouts [3], [4]. However, these tools are
still not fully automated and mature. The current industry
standard practice is to either move to the initial layout phase
quickly or use designer experience to manually guesstimate the
parasitic values for particular nets in a circuit. If the schematic
designers don’t have an accurate estimate of the interconnect
parasitics, it can take multiple cycles of re-design at both the
schematic and layout design stages which increases the total
design time.

Although interconnect capacitance affects the performance
of the circuit by directly changing its power and delay
characteristics, estimating this capacitance alone is not enough.
Interconnect resistance estimation is increasingly important as
process technology scales downward [5] and is especially
critical for analog circuits. Fig. 2. shows the large impact of
interconnect resistance on simulation accuracy by plotting the
difference between post-layout designs with and without
interconnect resistance included. Hence, it is important to
correctly estimate both R and C during the pre-layout design
phase to avoid surprises in the post-layout phase, where it is
costlier to rework the design to meet expected power and
performance targets.

Fig. 2. Bar plot showing the aggregate measurement error between

simulations where interconnect resistance is removed with respect to full post-

layout interconnect resistance and capacitance.

III. MACHINE LEARNING BASED PARASITIC ESTIMATION

To address the issues outlined in the previous section, a
parasitic estimation engine, MLParest, has been developed. We
leverage machine learning techniques with existing post-layout
extraction data to train estimation models and predict
interconnect parasitics. Machine learning has been proposed for
pre-routing timing prediction in the digital domain[6]. In the
analog mixed signal domain, it is worthwhile to emphasize that
using a machine learning paradigm in the context of parasitic
estimation is an industry first.

In order to introduce our approach to parasitic estimation, let
us consider an example of a pre-layout schematic net and its
post-layout counterpart shown in Fig. 3. Here a pre-layout net
transforms into a multi-port RC circuit after interconnect
parasitics are extracted. This transformation happens for every
net of a circuit, which then leads to significant differences in pre-
layout and post-layout circuit simulation. With MLParest we
aim to estimate this RC-network for each pre-layout net and then
use it as a proxy for the post-layout network in pre-layout
simulations.

Fig. 3. Pre-layout and post-layout representation of a net.

A. Modeling

Extracted nets can be of an arbitrary structure, typically a
tree, with several resistors and capacitors. Each net can be
different from others in terms of its topology and routing. In
order to make this problem tractable with machine learning, we
approximate each post-layout net using two scalars – effective
capacitance and effective resistance. Effective capacitance,
𝐶𝑒𝑓𝑓 , is the sum of total capacitance incident on a net – including

grounding and cross-capacitance to other nets. To compute
effective resistance, 𝑅𝑒𝑓𝑓 , we use linear time-invariant (LTI)

circuit theory. Here we define the concept of an effective time
constant, τ𝑒𝑓𝑓 , which accounts for the time constants of the

original circuit system. For a system with N poles, 𝑝1 , 𝑝2, … , 𝑝𝑁,
an effective time constant is defined as below:

 τeff = √
1

𝑝1
2 + ⋯+

1

𝑝𝑖
2 + ⋯+

1

𝑝𝑁
2 (1)

This allows us to compute effective resistance as follows:

𝑅𝑒𝑓𝑓 =
τ𝑒𝑓𝑓

𝐶𝑒𝑓𝑓
 (2)

0.0 10.0 20.0 30.0 40.0 50.0

Circuit-1

Circuit-2

Circuit-3

Circuit-4

Circuit-5

Circuit-6

Circuit-7

Circuit-8

Circuit-9

Error (%)

Error of Capacitance-only Post-layout
w.r.t. Full RC Post-layout

Max Error

Average Error

Having computed effective resistance and capacitance, we
can synthesize a post-layout net using a simple star topology

shown in Fig. 5, where 𝑅𝑏𝑟𝑎𝑛𝑐ℎ =
𝑅𝑒𝑓𝑓

𝑀
 where M is the number

of transistor connections to the net. The star topology has a time
constant equal to the effective time constant of the post-layout
net. We selected a star topology, instead of a dense multi-port
admittance matrix, for two reasons. The first being that a dense
multi-port matrix for each net is prohibitively expensive to
compute. Secondly, based on our extensive testing on industry
circuits we found that the star topology suffices for our parasitic
estimation application.

Fig. 4. Modeling of a multi-port net using the star topology.

B. Training

As shown in Fig. 5, the starting point of any Machine
Learning (ML) based approach is collecting a large amount of
training data called the dataset. In Fig. 5, �⃗⃗� is the vector of input
variables and 𝑦 is the response i.e. 𝑦 = 𝑓(𝑥). It is this unknown
function 𝑓 that an ML algorithm tries to learn given a dataset.
The learning algorithm chooses from a set of candidate functions
called the hypothesis set [7]. Based on appropriate error criteria,
such as Mean Square Error (MSE) or Mean Absolute Error
(MAE), the best function 𝑔(𝑥) from the hypothesis set is
selected. 𝑔(𝑥) is an approximation to the actual function 𝑓(𝑥),
which is unknown. The learned function 𝑔(𝑥) is then used in
applications as a proxy for 𝑓(𝑥). The richness of the hypothesis
set provides a trade-off between the accuracy of the learned
model and overfitting. At one extreme, if the hypothesis set has
only one candidate, it could turn out to be very inaccurate. On
the other hand, if the hypothesis set has too many candidates,
there could be overfitting since the learning algorithm could in
principle pick a candidate that fits the training data exactly. This
balancing act, called the bias-variance trade-off, is at the heart
of machine learning algorithms including ours.

Fig. 5. Flowchart of the general machine learning paradigm.

We now specialize the general ML training algorithm to the
problem of parasitic estimation as shown in Fig. 6. We start with
a collection of circuits with pre-layout (schematic) and post-
layout extracted (RC) data. Next, we extract features of each net
for all circuits by traversing their netlists. The �⃗⃗� variables in the
dataset, on a per net basis, are the features from the pre-layout
netlist which are: the number of connections on a net, the
number of hierarchies the net traverses, the number of the drain,
gate and source connections, the total width of all MOS devices,
net type (internal or port), and the number of p-type and n-type
devices. The y variables are the 𝑅𝑒𝑓𝑓 and 𝐶𝑒𝑓𝑓 values from the

past layout circuits. We learn two functions: one for resistance
and one for capacitance. Since we use supervised learning, we
compute actual 𝐶𝑒𝑓𝑓 and 𝑅𝑒𝑓𝑓 using post-layout nets. As

explained previously, 𝐶𝑒𝑓𝑓 is the sum of the total incident

capacitance on a net. To compute 𝑅𝑒𝑓𝑓, we first obtain a set of

dominant poles using PRIMA [8] of the multi-port net. These
dominant poles are then used to compute τ𝑒𝑓𝑓 , which then

yields 𝑅𝑒𝑓𝑓 based on (2).

Fig. 6. Model training for parasitic estimation.

After evaluating several machine learning methods like
neural-networks, linear regression, etc., we chose the Random
Forest model [7], [9] for supervised learning since it offered the
best prediction accuracy based on our experiments. From the
total collection of nets derived from all the circuits in the dataset,
we randomly select 70% for training and 30% for testing. We
used an K-fold cross-validation scheme to tune the parameters
of the decision trees such as depth, the number of trees in the
forest, etc. We also use the RANSAC algorithm to remove
outliers [10]. These outliers may be present in the data due to
extraction with dirty layouts, inconsistency between schematic
and layout, etc.

C. Inference

Once a model has been learned, we use it to predict
interconnect parasitics of pre-layout schematic nets that haven’t
been seen before. As illustrated in Fig. 7, we first parse the pre-
layout netlist and extract the features of each net. Next, these
features are fed to the trained Random Forest models for 𝑅𝑒𝑓𝑓

and 𝐶𝑒𝑓𝑓 yielding predicted values. Using these scalars, we

synthesize a star topology for each net. This is pictorially shown

in Fig. 8, for an M-port net. For simulation purposes, we
generate an industry-standard format called Standard Parasitic
Exchange Format (SPEF) [11] to write estimated parasitic
information. SPEF file contains star topology of every net in the
circuit. Finally, the pre-layout netlist and SPEF file are
consumed by SPICE-like simulators to perform circuit
simulation. In analog design, it is important to have parasitic
matching at some differential nodes to reduce variation. By
design, since those nets have exactly the same features,
MLParest honors analog matching.

Fig. 7. MLParest inference flow diagram.

NET A MReff MReff

MReffMReff

Ceff

Fig. 8. Parasitic representation of a pre-layout net for simulation with

MLParest.

IV. RESULTS

A. MLParest training

We implemented the MLParest framework and associated
model learning in Python with the scikit-learn package [12]. For
MLParest, we used 212 and 647 analog blocks to train on a
14nm and 10nm process, respectively. The 10nm and 14nm
datasets contain a wide variety of industrial analog circuits.
Table I shows some statistics for both the 10nm and 14nm
training and analysis. As part of data gathering, we first traverse
design databases for archived data. Then, we learn 𝑅𝑒𝑓𝑓 and

𝐶𝑒𝑓𝑓 values from previous post-layout designs which is

subsequently used for training the Random Forest models. It is
important to note that, MLParest does not depend on test
benches with stimuli. Thus, we can leverage early post-layout
data available for certain key analog blocks and use it across the
board for hundreds of other designs on the same process node
without waiting for layout. MLParest has been used to gather
data and train models for several different process technologies
with very little modification to the overall flow.

TABLE I. MODEL TRAINING RESULTS

Criterion 10nm 14nm

Number of analog IP buildings blocks 686 212

Number of nets 276K 176K

Cap. R2 score 0.95 0.94

Res. R2 score 0.80 0.73

In Fig. 9-12, we compare actual and predicted values of effective
resistance and capacitance for 10nm and 14nm nets. As can be
seen, Random Forest models predict R and C well. It is observed
that the variation in resistance predictions is greater than the
variation seen in capacitance. This is potentially due to the fact
that our feature list is missing placement information which
affects wire-length and hence the resistance. As is the case with
machine learning, we do find outliers in our prediction. Based
on our investigation they usually occur on enable, clock, and
global signals with several thousands of devices connected to
them. In practice, once such signals are turned on, they do not
contribute much to measurements which affect circuit
performance due to their constant nature. However, we are
working towards improving and capturing such outliers in our
modeling.

Fig. 9. Scatter plot comparing normalized actual and predicted resistance

values for 14nm

Fig. 10. Scatter plot comparing normalized actual and predicted capacitance

values for 14nm

Fig. 11. Scatter plot comparing normalized actual and predicted resistance

values for 10nm

Fig. 12. Scatter plot comparing normalized actual and predicted capacitance

values for 10nm

B. Accuracy

In this section, we present our results from using MLParest on
the nine 10nm analog circuits introduced earlier. These nine
circuits are not part of the training set. Fig. 13 shows the average
of absolute error (%) (MAE) across simulation measurements
on the 10nm test cases for pre-layout and MLParest against the
post-layout results. These metrics include delay, rise/fall time,
bandwidth, gain, average current over time, leakage current, and
oscillator frequency. Fig. 14 shows the maximum absolute error
(%) comparison between pre-layout and MLParest against post-
layout simulation results. Fig. 13 and Fig. 14 clearly show that
MLParest significantly improves simulation accuracy over pre-
layout simulations.

Fig. 15 shows the AC output response waveforms from the
Circuit 5 test case. It is clear that the MLParest predicted RC
parasitics track post-layout results for metrics such as DC gain,
peaking frequency, and bandwidth much better than the pre-
layout schematic only results. In Fig. 16, we compare transient
response of a signal. As is evident from the figure, MLParest
closes the gap between pre-layout and post-layout circuit.

Fig. 13. Average MLParest error with respect to post-layout simulation.

Fig. 14. Maximum MLParest error with respect to post-layout simulation.

Fig. 15. AC response of an output signal for Circuit 5.

0.0 20.0 40.0 60.0 80.0 100.0 120.0

Circuit-1

Circuit-2

Circuit-3

Circuit-4

Circuit-5

Circuit-6

Circuit-7

Circuit-8

Circuit-9

Average of absolute error (%)

MLParest vs. Pre-layout
w.r.t. Post-layout

MLParest RC

Pre-layout

0.0 50.0 100.0 150.0 200.0 250.0

Circuit-1

Circuit-2

Circuit-3

Circuit-4

Circuit-5

Circuit-6

Circuit-7

Circuit-8

Circuit-9

Maximum absolute error (%)

MLParest vs. Pre-layout
w.r.t. Post-layout

ML Parest RC

Pre-layout

Fig. 16. Transient response of a Circuit 9

Table 2 shows data from two specific 14nm test cases. RC
estimation using MLParest significantly reduces the accuracy
gap with respect to post-layout results.

TABLE II. PAREST ACCURACY ON 14NM TEST CASES.

Test case, Metric Post-

layout

Pre-layout MLParest RC

Ring Oscillator,

Frequency (normalized)

1.000 2.341 1.222

Charge Pump Output

Voltage (normalized)

1.000 1.054 0.988

C. Runtime

For the above test cases, MLParest estimation time is very small
(typically seconds) as compared to overall simulation time on
the order of minutes or hours. We observed a runtime increase
of about 20% as compared to pre-layout simulations which is
still significantly lower than full post-layout simulations. Also,
we would also like to make a note on the theoretical aspects of
circuit simulation runtime in conjunction with MLParest. Circuit
simulation runtime depends on the number of nodes, the number
of dense rows in the circuit matrix, and the Number of Non-
Zeros (NNZ) in the circuit matrix. In practice, the number of
nodes and NNZs in pre-layout and corresponding post-layout
circuits differs by two orders of magnitude. Due to the star
topology of the MLParest RC model, the additional number of
new nodes and NNZs inserted in the pre-layout circuit matrix is
strictly bounded by four times the number of MOSFETs as one
resistor maximum is attached to each pin (drain, gate, source,
bulk). Moreover, MLParest does not increase the number of
dense rows in the circuit matrix. Hence, we do not expect a
significant increase in runtime with MLParest usage as
compared to the pre-layout simulation without it.

V. CONCLUSIONS

We presented a machine learning based parasitic estimation
tool called MLParest which can predict both interconnect
resistance and capacitance for pre-layout schematics. MLParest

works seamlessly across multiple industry-standard analog
simulators. MLParest is not limited to analog design and can be
used in mixed-signal validation flows as well. MLParest does
not depend on test benches with stimuli and is easily scalable
across different technology nodes. Finally, MLParest supports
industry-standard input and output formats allowing it to be
incorporated alongside a variety of EDA tools.

The experimental results show a significantly improved
accuracy with respect to pre-layout simulations. Our future work
includes early prediction for electromigration and IR drop to
avoid potential issues before the layout design phase is started.
Another possible extension of our work includes an enhanced
placement based parasitic estimation for achieving better
accuracy on designs that are sensitive to device placement.

VI. ACKNOWLEDGEMENT

We would like to thank Jian Gong, Mikalai Kisialiou,
Renuka Lokare, Sunder Kankipati, Reshma Kamat, and Kunal
Kishore for sharing background knowledge on parasitic
estimation and circuit simulator integration.

REFERENCES

[1] H. Y. Foo, K. W. C. Leong, and R. Mohd-Mokhtar, “Density aware

interconnect parasitic estimation for mixed signal design,” in 2012 IEEE

International Conference on Circuits and Systems (ICCAS), 2012, pp.

258–262.
[2] S. Shah and A. Nunez, “Pre-layout parasitic estimation in interconnects,”

in 48th Midwest Symposium on Circuits and Systems, 2005., 2005, pp.

1442–1445.
[3] R. Martins, N. Lourenço, A. Canelas, R. Póvoa, and N. Horta, “AIDA:

Robust layout-aware synthesis of analog ICs including sizing and layout

generation,” in 2015 International Conference on Synthesis, Modeling,
Analysis and Simulation Methods and Applications to Circuit Design

(SMACD), 2015, pp. 1–4.

[4] E. Chang et al., “BAG2: A process-portable framework for generator-
based AMS circuit design,” in 2018 IEEE Custom Integrated Circuits

Conference (CICC), 2018, pp. 1–8.

[5] “The International Roadmap for Devices and Systems,” IEEE, 2017
[Online]. Available:

https://irds.ieee.org/images/files/pdf/2017/2017IRDS_MM.pdf

[6] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” in 2019 56th

ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–6.

[7] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from
Data, vol. 4. AMLBook New York, NY, USA:, 2012.

[8] A. Odabasioglu, M. Celik, L. T. Pileggi, L. T. Pileggi, and L. T. Pileggi,

“PRIMA: Passive reduced-order interconnect macromodeling
algorithm,” in Proceedings of the 1997 IEEE/ACM international

conference on Computer-aided design, 1997, pp. 58–65.

[9] T. K. Ho, “Random decision forests,” in Proceedings of 3rd
international conference on document analysis and recognition, 1995,

vol. 1, pp. 278–282.

[10] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and

automated cartography,” Communications of the ACM, vol. 24, no. 6,

pp. 381–395, 1981.
[11] “1481-2009 - IEEE Standard for Integrated Circuit (IC) Open Library

Architecture (OLA).” [Online]. Available:

https://ieeexplore.ieee.org/document/5430852
[12] Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in

Python." Journal of machine learning research 12.Oct (2011): 2825-
2830.

