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Abstract—A novel machine learning based parasitic estimation 

(MLParest) method for pre-layout custom circuit design is 

presented. It reduces the error between pre-layout and post-layout 

circuit simulation from 37% to 8% on average for different 

measurements across a variety of analog circuits. MLParest can 

thus greatly reduce the number of iterations between pre-layout 

and post-layout design phases. The key contributions of this work 

are a machine learning based approach to parasitic estimation and 

a push-button model training framework, scalable across different 

technology nodes. To the best of our knowledge, a machine 

learning based framework of parasitic estimation is an industry 

first.  
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I. INTRODUCTION 

Traditional analog IP development cycles start with schematic 
design, which is based on the architecture and specifications 
expected of an analog block. After initial sizing, analog 
designers perform performance, reliability and variation 
analysis using  a SPICE-like circuit simulator. If the circuit fails 
to meet a specification across any process, temperature or 
voltage corner, analog designers must resize the circuit in the 
schematic. This phase is known as pre-layout design. Once 
specifications are met in the schematic, a layout of circuit 
schematic is drawn. During the layout, a team of mask designers, 
translates the abstract schematic to a technology specific format 
which can be fabricated. This process  is time consuming, often 
taking anywhere from days to weeks, and is expected to be even 
longer in the future as design rules of advanced technology 
nodes become increasingly complex. Once the layout is ready, 
circuit designers perform interconnect parasitic (resistance and 
capacitance) extraction. Next, using the extracted parasitics 
back-annotated into the schematic design netlist, post-layout 
SPICE simulations are performed. Only at this stage, if all the 
specifications of the analog block are met, the design cycle 
completes. If any specification is not met in the post-layout 
simulations, the schematic is resized or rearchitected and sent 
back for layout and extraction causing several iterations between 
schematic  and mask design phases. 

Usually, the performance of post-layout circuits is widely 
different from pre-layout circuits due to the addition of 
interconnect parasitics and complex device layout effects in 
post-layout circuits. To illustrate this, we performed simulations 
on a set of representative analog IP blocks on a 10 nm 
technology across design metrics such as delay, rise/fall time, 
duty cycle, frequency, bandwidth, DC gain, leakage current and 

power. Fig. 1 shows the differences in measurements between 
pre-layout and post-layout simulations for this set of 10nm 
analog circuits. This collection of circuits includes a duty-cycle 
corrector, PLL clock generator, CTLE, Op-Amp, sense-
amplifier, TX-driver, level-shifter, ring oscillator, and a PLL 
delay line. We plot  the average and maximum of absolute 
values of error (%) across a set of measurements for each circuit 
in order to avoid cancellation of positive and negative errors. 
From the plot, we can see that there is a huge difference in the 
performance of the circuits when interconnect parasitics are not 
included in the simulations. This leads to multiple iterations 
between the pre-layout and post-layout phases leading to 
resizing and layout fixes. To circumvent this problem, circuit 
designers often put excessive margins in specifications as guard 
bands in pre-layout design phase. This leads to sub-optimal 
designs in terms of power, performance, and area.  

 

Fig. 1. Bar plot showing the error in pre-layout simulation measurements 

when compared to the corresponding post-layout simulation measurements. 

To address this issue, we present our machine learning based 
parasitic estimation framework called MLParest in this paper. 
MLParest provides an accurate estimate of expected post-layout 
interconnect parasitics in the pre-layout design phase. Note that 
both the interconnect resistance and capacitance can be 
estimated using MLParest to aid circuit designers. This allows 
designers to incorporate the interconnect effects on performance 
of the circuit during the schematic design stage. This reduces the 
gap between post-layout and pre-layout simulation results which 
helps reduce design iterations between these two phases. 
MLParest can thus lead to a much faster turn-around time for 
analog designs. 
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The rest of the paper is organized as follows. Section II discusses 
background and related work. In Section III, we present our 
machine learning based parasitic estimation flow. Section IV 
summarizes the results. Section V concludes this paper. 

II.  RELATED WORK 

There are no known tools currently in the Electronic Design 
Automation (EDA) industry which predict interconnect parasitic 
RC for pre-layout circuits based on just the information 
contained in the schematics. Prior work  [1], [2] has proposed 
the use of floor-planning, placement, and routing information in 
addition to schematic information to estimate interconnect 
parasitics. However, this information is not easily available to 
analog designers in the early stages of design, which limits its 
usage. There is a growing body of research on automatic 
generation of analog layouts [3], [4]. However, these tools are 
still not fully automated and mature. The current industry 
standard practice is to either move to the initial layout phase 
quickly or use designer experience to manually guesstimate the 
parasitic values for particular nets in a circuit. If the schematic 
designers don’t have an accurate estimate of the interconnect 
parasitics, it can take multiple cycles of re-design at both the 
schematic and layout design stages which increases the total 
design time.  

Although interconnect capacitance affects the performance 
of the circuit by directly changing its power and delay 
characteristics, estimating this capacitance alone is not enough. 
Interconnect resistance estimation is increasingly important as 
process technology scales downward [5] and is especially 
critical for analog circuits. Fig. 2. shows the large impact of 
interconnect resistance on simulation accuracy by plotting the 
difference between post-layout designs with and without 
interconnect resistance included. Hence, it is important to 
correctly estimate both R and C during the pre-layout design 
phase to avoid surprises in the post-layout phase, where it is 
costlier to rework the design to meet expected power and 
performance targets. 

 

Fig. 2. Bar plot showing the aggregate measurement error between  

simulations where interconnect resistance is removed with respect to full post-

layout interconnect resistance and capacitance. 

III. MACHINE LEARNING BASED PARASITIC ESTIMATION 

To address the issues outlined in the previous section, a 
parasitic estimation engine, MLParest, has been developed. We 
leverage machine learning techniques with existing post-layout 
extraction data to train estimation models and predict 
interconnect parasitics. Machine learning has been proposed for 
pre-routing timing prediction in the digital domain[6]. In the 
analog mixed signal domain, it is worthwhile to emphasize that 
using a machine learning paradigm in the context of parasitic 
estimation is an industry first. 

In order to introduce our approach to parasitic estimation, let 
us consider an example of a pre-layout schematic net and its 
post-layout counterpart shown in Fig. 3. Here a pre-layout net 
transforms into a multi-port RC circuit after interconnect 
parasitics are extracted. This transformation happens for every 
net of a circuit, which then leads to significant differences in pre-
layout and post-layout circuit simulation. With MLParest we 
aim to estimate this RC-network for each pre-layout net and then 
use it as a proxy for the post-layout network in pre-layout 
simulations. 

 

Fig. 3. Pre-layout and post-layout representation of a net.  

A. Modeling 

Extracted nets can be of an arbitrary structure, typically a 
tree, with several resistors and capacitors. Each net can be 
different from others in terms of its topology and routing. In 
order to make this problem tractable with machine learning, we 
approximate each post-layout net using two scalars – effective 
capacitance and effective resistance. Effective capacitance, 
𝐶𝑒𝑓𝑓 , is the sum of total capacitance incident on a net – including 

grounding and cross-capacitance to other nets. To compute 
effective resistance, 𝑅𝑒𝑓𝑓 , we use linear time-invariant (LTI) 

circuit theory. Here we define the concept of an effective time 
constant, τ𝑒𝑓𝑓 ,  which accounts for the time constants of the 

original circuit system. For a system with N poles, 𝑝1 , 𝑝2, … , 𝑝𝑁, 
an effective time constant is defined as below: 
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This allows us to compute effective resistance as follows: 

𝑅𝑒𝑓𝑓 =
τ𝑒𝑓𝑓

𝐶𝑒𝑓𝑓
            (2) 
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Having computed effective resistance and capacitance, we 
can synthesize a post-layout net using a simple star topology 

shown in Fig. 5, where 𝑅𝑏𝑟𝑎𝑛𝑐ℎ =
𝑅𝑒𝑓𝑓

𝑀
 where M is the number 

of transistor connections to the net. The star topology has a time 
constant equal to the effective time constant of the post-layout 
net. We selected a star topology, instead of a dense multi-port 
admittance matrix, for two reasons. The first being that a dense 
multi-port matrix for each net is prohibitively expensive to 
compute. Secondly, based on our extensive testing on industry 
circuits we found that the star topology suffices for our parasitic 
estimation application. 

 

Fig. 4. Modeling of a multi-port net using the star topology. 

B. Training 

As shown in Fig. 5, the starting point of any Machine 
Learning (ML) based approach is collecting a large amount of 
training data called the dataset. In Fig. 5, �⃗⃗�  is the vector of input 
variables and 𝑦 is the response i.e. 𝑦 = 𝑓(𝑥 ). It is this unknown 
function 𝑓 that an ML algorithm tries to learn given a dataset. 
The learning algorithm chooses from a set of candidate functions 
called the hypothesis set  [7]. Based on appropriate error criteria, 
such as Mean Square Error (MSE) or Mean Absolute Error 
(MAE), the best function 𝑔(𝑥 )  from the hypothesis set is 
selected.  𝑔(𝑥 ) is an approximation to the actual function 𝑓(𝑥 ), 
which is unknown. The learned function 𝑔(𝑥 ) is then used in 
applications as a proxy for 𝑓(𝑥 ). The richness of the hypothesis 
set provides a trade-off between the accuracy of the learned 
model and overfitting. At one extreme, if the hypothesis set has 
only one candidate, it could turn out to be very inaccurate. On 
the other hand, if the hypothesis set has too many candidates, 
there could be overfitting since the learning algorithm could in 
principle pick a candidate that fits the training data exactly. This 
balancing act, called the bias-variance trade-off, is at the heart 
of machine learning algorithms including ours. 

 

Fig. 5. Flowchart of the general machine learning paradigm. 

We now specialize the general ML training algorithm to the 
problem of parasitic estimation as shown in Fig. 6. We start with 
a collection of circuits with pre-layout (schematic) and post-
layout extracted (RC) data. Next, we extract features of each net 
for all circuits by traversing their netlists. The �⃗⃗�  variables in the 
dataset, on a per net basis, are the features from the pre-layout 
netlist which are: the number of connections on a net, the 
number of hierarchies the net traverses, the number of the drain, 
gate and source connections, the total width of all MOS devices, 
net type (internal or port), and the number of p-type and n-type 
devices. The y variables are the 𝑅𝑒𝑓𝑓 and  𝐶𝑒𝑓𝑓  values from the 

past layout circuits. We learn two functions: one for resistance 
and one for capacitance. Since we use supervised learning, we 
compute actual 𝐶𝑒𝑓𝑓  and 𝑅𝑒𝑓𝑓  using post-layout nets.  As 

explained previously, 𝐶𝑒𝑓𝑓  is the sum of the total incident 

capacitance on a net. To compute 𝑅𝑒𝑓𝑓, we first obtain a set of 

dominant poles using PRIMA [8] of the multi-port net.  These 
dominant poles are then used to compute  τ𝑒𝑓𝑓 , which then 

yields 𝑅𝑒𝑓𝑓 based on (2). 

 

Fig. 6. Model training for parasitic estimation. 

After evaluating several machine learning methods like 
neural-networks, linear regression, etc., we chose the Random 
Forest model [7], [9] for supervised learning since it offered the 
best prediction accuracy based on our experiments. From the 
total collection of nets derived from all the circuits in the dataset, 
we randomly select 70% for training and 30% for testing. We 
used an K-fold cross-validation scheme to tune the parameters 
of the decision trees such as depth, the number of trees in the 
forest, etc. We also use the RANSAC algorithm to remove 
outliers [10]. These outliers may be present in the data due to 
extraction with dirty layouts, inconsistency between schematic 
and layout, etc. 

C. Inference  

Once a model has been learned, we use it to predict 
interconnect parasitics of pre-layout schematic nets that haven’t 
been seen before. As illustrated in Fig. 7, we first parse the pre-
layout netlist and extract the features of each net. Next, these 
features are fed to the trained Random Forest models for 𝑅𝑒𝑓𝑓 

and 𝐶𝑒𝑓𝑓  yielding predicted values. Using these scalars, we 

synthesize a star topology for each net. This is pictorially shown 



in Fig. 8, for an M-port net. For simulation purposes, we 
generate an industry-standard format called Standard Parasitic 
Exchange Format (SPEF) [11] to write estimated parasitic 
information. SPEF file contains star topology of every net in the 
circuit. Finally, the pre-layout netlist and SPEF file are 
consumed by SPICE-like simulators to perform circuit 
simulation. In analog design, it is important to have parasitic 
matching at some differential nodes to reduce variation. By 
design, since those nets have exactly the same features, 
MLParest honors analog matching. 

 

Fig. 7. MLParest inference flow diagram. 
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Fig. 8. Parasitic representation of a pre-layout net for simulation with 

MLParest. 

IV. RESULTS 

A. MLParest training 

We implemented the MLParest framework and associated 
model learning in Python with the scikit-learn package [12]. For 
MLParest, we used 212 and 647 analog blocks to train on a 
14nm and 10nm process, respectively. The 10nm and 14nm 
datasets contain a wide variety of industrial analog circuits. 
Table I shows some statistics for both the 10nm and 14nm 
training and analysis. As part of data gathering, we first traverse 
design databases for archived data. Then, we learn 𝑅𝑒𝑓𝑓  and 

𝐶𝑒𝑓𝑓  values from previous post-layout designs which is 

subsequently used for training the Random Forest models. It is 
important to note that, MLParest does not depend on test 
benches with stimuli. Thus, we can leverage early post-layout 
data available for certain key analog blocks and use it across the 
board for hundreds of other designs on the same process node 
without waiting for layout. MLParest has been used to gather 
data and train models for several different process technologies 
with very little modification to the overall flow. 

 

TABLE I.  MODEL TRAINING RESULTS 

Criterion 10nm  14nm  

Number of analog IP buildings blocks 686 212 

Number of nets 276K 176K 

Cap. R2 score 0.95 0.94 

Res. R2 score 0.80 0.73 

 

In Fig. 9-12, we compare actual and predicted values of effective 
resistance and capacitance for 10nm and 14nm nets. As can be 
seen, Random Forest models predict R and C well. It is observed 
that the variation in resistance predictions is greater than the 
variation seen in capacitance. This is potentially due to the fact 
that our feature list is missing placement information which 
affects wire-length and hence the resistance. As is the case with 
machine learning, we do find outliers in our prediction. Based 
on our investigation they usually occur on enable, clock, and 
global signals with several thousands of devices connected to 
them. In practice, once such signals are turned on, they do not 
contribute much to measurements which affect circuit 
performance due to their constant nature. However, we are 
working towards improving and capturing such outliers in our 
modeling. 

 

Fig. 9. Scatter plot comparing normalized actual and predicted resistance 

values for 14nm  

 

Fig. 10. Scatter plot comparing normalized actual and predicted capacitance 

values for 14nm  



 

Fig. 11. Scatter plot comparing normalized actual and predicted resistance 

values for 10nm  

 

Fig. 12. Scatter plot comparing normalized actual and predicted capacitance 

values for 10nm  

 

B. Accuracy 

In this section, we present our results from using MLParest on 
the nine 10nm analog circuits introduced earlier. These nine 
circuits are not part of the training set. Fig. 13 shows the average 
of absolute error (%) (MAE) across simulation measurements 
on the 10nm test cases for pre-layout and MLParest against the 
post-layout results. These metrics include delay, rise/fall time, 
bandwidth, gain, average current over time, leakage current, and 
oscillator frequency. Fig. 14 shows the maximum absolute error 
(%) comparison between pre-layout and MLParest against post-
layout simulation results. Fig. 13 and Fig. 14 clearly show that 
MLParest significantly improves simulation accuracy over pre-
layout simulations. 

Fig. 15 shows the AC output response waveforms from the 
Circuit 5 test case. It is clear that the MLParest predicted  RC 
parasitics  track post-layout results for metrics such as DC gain, 
peaking frequency, and bandwidth much better than the pre-
layout schematic only results. In Fig. 16, we compare transient 
response of a signal. As is evident from the figure, MLParest 
closes the gap between pre-layout and post-layout circuit. 

 

Fig. 13. Average MLParest error with respect to post-layout simulation. 

 

Fig. 14. Maximum MLParest error with respect to post-layout simulation. 

 

Fig. 15. AC response of an output signal for Circuit 5. 
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Fig. 16. Transient response of a Circuit 9 

Table 2 shows data from two specific 14nm test cases. RC 
estimation using MLParest significantly reduces the accuracy 
gap with respect to post-layout results. 

TABLE II.  PAREST ACCURACY ON 14NM TEST CASES. 

Test case, Metric Post-

layout 

Pre-layout MLParest RC  

Ring Oscillator, 

Frequency (normalized) 

1.000 2.341 1.222 

Charge Pump Output 

Voltage (normalized) 

1.000 1.054 0.988 

 

C. Runtime 

For the above test cases, MLParest estimation time is very small 
(typically seconds) as compared to overall simulation time on 
the order of minutes or hours. We observed a runtime increase 
of about 20% as compared to pre-layout simulations which is 
still significantly lower than full post-layout simulations. Also, 
we would also like to make a note on the theoretical aspects of 
circuit simulation runtime in conjunction with MLParest. Circuit 
simulation runtime depends on the number of nodes, the number 
of dense rows in the circuit matrix, and the Number of Non-
Zeros (NNZ) in the circuit matrix. In practice, the number of 
nodes and NNZs in pre-layout and corresponding post-layout 
circuits differs by two orders of magnitude. Due to the star 
topology of the MLParest RC model, the additional number of 
new nodes and NNZs inserted in the pre-layout circuit matrix is 
strictly bounded by four times the number of MOSFETs as one 
resistor maximum is attached to each pin (drain, gate, source, 
bulk). Moreover, MLParest does not increase the number of 
dense rows in the circuit matrix. Hence, we do not expect a 
significant increase in runtime with MLParest usage as 
compared to the pre-layout simulation without it. 

V. CONCLUSIONS 

We presented a machine learning based parasitic estimation 
tool called MLParest which can predict both interconnect 
resistance and capacitance for pre-layout schematics. MLParest 

works seamlessly across multiple industry-standard analog 
simulators. MLParest is not limited to analog design and can be 
used in mixed-signal validation flows as well. MLParest does 
not depend on test benches with stimuli and is easily scalable 
across different technology nodes. Finally, MLParest supports 
industry-standard input and output formats allowing it to be 
incorporated alongside a variety of EDA tools. 

The experimental results show a significantly improved 
accuracy with respect to pre-layout simulations. Our future work 
includes early prediction for  electromigration and IR drop to 
avoid potential issues before the layout design phase is started. 
Another possible extension of our work includes an enhanced 
placement based parasitic estimation for achieving better 
accuracy on designs that are sensitive to device placement. 
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